Some observations on the pedestal effect.
نویسندگان
چکیده
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when it is added to a masking or pedestal grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise-noise from which a 1.5-octave band centered on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and the pedestal. We speculate that the spatial-frequency components of the notched noise above and below the spatial frequency of the signal and the pedestal prevent "off-frequency looking," that is, prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and the pedestal. Thus, the pedestal or dipper effect measured without notched noise appears not to be a characteristic of individual spatial-frequency-tuned channels.
منابع مشابه
PSFC/JA-02-6 Observations and Empirical Scalings of the High-Confinement Mode Pedestal on Alcator C-Mod
On the Alcator C-Mod tokamak [Phys. Plasmas 1, 1511, (1994)], radial profiles of electron temperature (Te) and density (ne) are measured at the plasma edge with millimeter resolution Thomson scattering [Rev. Sci. Instrum. 72, 1107 (2001)]. Edge transport barriers in the high confinement regime (Hmode) exhibit Te, ne pedestals with typical widths of 2–6 mm, with the Te pedestal on average slight...
متن کاملMeasurements and simulations of low-wavenumber pedestal turbulence in the National Spherical Torus Experiment
Previous pedestal turbulence measurements in the National Spherical Torus Experiment assessed the spatial and temporal properties of turbulence in the steep gradient region of H-mode pedestals during edge localized mode (ELM)-free, MHD-quiescent periods. Here, we extend the analysis to fluctuation amplitudes and compare observations to pedestal turbulence simulations. Measurements indicate norm...
متن کاملPotential Methods For Improving Pedestal Temperatures and Fusion Performance
The physics of the tokamak edge is very complicated, and the scaling of the H-mode transport barrier pedestal has significant uncertainties. Evidence from the largest tokamaks appears to support a model in which the H-mode pedestal width scales linearly with the poloidal gyroradius and the gradient scales with ideal MHD ballooning limits. However, there appears to be significant variability in ...
متن کاملA neurophysiologically plausible population code model for human contrast discrimination.
The pedestal effect is the improvement in the detectability of a sinusoidal grating in the presence of another grating of the same orientation, spatial frequency, and phase-usually called the pedestal. Recent evidence has demonstrated that the pedestal effect is differently modified by spectrally flat and notch-filtered noise: The pedestal effect is reduced in flat noise but virtually disappear...
متن کاملObservation of edge instability limiting the pedestal growth in tokamak plasmas.
With fusion device performance hinging on the edge pedestal pressure, it is imperative to experimentally understand the physical mechanism dictating the pedestal characteristics and to validate and improve pedestal predictive models. This Letter reports direct evidence of density and magnetic fluctuations showing the stiff onset of an edge instability leading to the saturation of the pedestal o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2007